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Abstract

Two methods for obtaining sequential test based confidence
intervals for the mean of a normal distribution are proposed and
compared. One method involves reducing the bias introduced into the
sample mean by optional stopping. The other defines the confidence

interval directly in terms of the stopping time of the test.

\
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1 Introduction

ESTIMATION FOLLOWING SEQUENTIAL TESTS

In decision oriented hypothesis testing sequential analysis

offers an advantage over fixed sample size procedures. In cases which

are not close to

the borderline between hypotheses, one can make a

decision on the basis of a relatively small amount of data and reduce

the cost of experimentation. It 1s commonly supposed that sequential

tests are not so

with an estimate

observation that

soon as there 1s

useful when one wants to supplement his test results
of some parameter. The basis for this belief i1s the
sequential tests are designed to terminate sampling as

sufficient reason to reject one hypothesis, and 1t

trequently occurs that insufficient data 1s then available for accurate

estimation. A second reason for the paucity ot studies of estimation

following sequential tests 1s the mathematical difficulty associated

with computing the sampling distributions of such estimates.

The primary purpose of this paper is to suggest point and

confidence interval estimates for use 1n conjunction with the class of

sequential tests

recommended by Armitage (1975) for clinical trials.

Two approaches are considered. One begins with the customary fixed

sample size estimactor which is then modified to reduce the bias created

by random termination of the experiment. The other and more novel

approach attempts to quantify one's intuitive feeling that the sooner a

sequential test terminates the more evidence it provides for a large

departure from the boundary between hypotheses. To facilitate




understanding the proposed procedures most of the paper is restricted
tc estimating the mean c¢f a normal population with known variance. The
more practical and difficult cases of a normal mean with unknown vari-
ance and Bernoulli mean p are discussed briefly.

In clinical trials the desirability of sequential tests arises
tc a large degree from ethical considerations. For example, if one 1is
comparing two treatments in a matched pairs experiment, where in each
palr one person 1is assigned at random to each treatment, and if ocne
treatment is considerably superior, the experiment should be terminated
as soon as possible so that only a small number of patients are
subjected to the inferior treatment. To be more specific, suppose that
for n = 1,2,... the difference in response in the nsh pair, xn, is
normally distributed with unknown mean p and known variance 02
independently of the differences in the other pairs. Let

8 =y P+ T X and for given b > 0 define the stopping rule

T = first n > 1 such that [s | > obva . (1)

Let m be a positive integer. Consider the sequential test of H : yu =0

0
against Hl: U # 0 which terminates sampling at T' = min(T,m) and

rejects H 1f and only {f T < m.

0
Let 8 = /0. The distribution of T and hence the power func-
tion and expected sample size of these tests depend on the parameters
(4y0) only through the value of 6. The tests have been studied numer-
ically by McPherson and Armitage (1971)--see also Armitage (1975)--

whose tables allow one to choose the design parameters b and m to

attain a given significance level o = PO(T:;m} and type II error
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probability B = PQ{T >m} at a given value & # 0. They have been
studied asymptotically for large b and m by Siegmund (1977), whose
approximaticns compare favorably with the numerical results of
McPherson and Armitage, and whose methods torm the basis for this
paper. Technical aspects of the asymptotic analysis use ideas which go
back to Anscombe (1953) and have recently also been studied by
Wocdroofe (1976b) in a context related to the present one.

The following heuristic counsiderations suggest that an
experiment terminated by the stopping rule T may be useful in some
estimation problems, and hence the goals of estimation and testing may
not be in conflict to the degree commonly supposed.

The estimator B sn/n of u based on x.,...,x has variance
n

1
az/n. To estimate p (assumed # 0) with a prescribed proportional
accuracy, one would like to choose n so that n-% g < gipl, where b 1s a
measure of the accuracy desired. This is, of course, impossible
because the inequality defining n depends on the unknown value of |u|;
but if one is free to choose his sample size sequentially, 1t suggests
estimating |u| by l;n{ and stopping with the first n > 1 such that

e . g -1
n ‘0 < b[xn{. This stopping ruie is of the form (1) with b = b .

X

Iruncating the experiment at the mEb observation has the interpretation
of accepting an estimate of prescribed absclute accuracy when !ul appears
to be so small that the prescribed proportional accuracy requirement
would necessitate an extremely large sample size.

In Sections 2 and 3, where 0 1s assumed known, it will be

convenlient to take 0 = 1, so 0 = u/o = u.




2. Confidence Intervals

This section attempts to quantify by means of confidence
intervals one's intuitive feeling that small values of the stopping
rule T are evidence in favor of large values of |6|. It should be
noted that with minor modifications the conceptual framework of the
first part of this section may be adapted to various stopping rules and
parent distributions. However, the asymptotic calculations that come
later rely somewhat more heavily on the definition (1) and the assump-
tion of normality. See also Section 4.

To determine confidence intervals for 6 based on observing T'

and s (here as before T' = min (T,m)), it is useful to define several

T'
auxiliary functions. For 0 < ¥y i.%-, n=1,2,..., and |£| < b¥m , let

8,(n) = inf{6: Py{T<n, s >0} >y} , (2)

8,(8) = inf{6: Pe{Tf_m, s,r>0} + Po{T>m, smif,} > 5 £3)

€l(n) = sup{6: Py{T>n} + P {T<n, sT<0} s f [ (4)
and

6,(8) = - 8,(-8) . (5)

It is easy to see from continuity and monotonicity considerations that

these functions are well defined and that gi < 61 (1=1,2). It is con-

venient to assume that Ql(m) > 0, which will be the case provided that
2y > Po{Tjgm}, the significance level of the test defined in Section 1.

Let

T QI(T)I 6 9Z(Bm)l{'l‘wn} i el(T)I{Tim,s <0} (6)

{Tf_m.s,r>0} T

and




8 = B 7)1, -.}_ s x Rt - %
1(I)I‘1T:~_m,s,r >0} ¥ %2080 (75 m) il(T)IIT;;n,srv' 0} (7)

Then 8 < 8 and the interval [8, 7] is a 100(1 - 2Y)% confidence interval
for 8. The proof of this last assertion is rather tedious, since it
involves separate consideration of several cases. It is deferred to
the Appendix.

Exact computation of the probabilities involved in (2)~(4) is a
rather complicated numerical problem. A fairly easy asymptotic analy-
sis yields what appear to be adequate approximations for a wiée range
of parameter values. Most of the rest of this section is devoted to
describing this asymptotic analysis and to discussing an example.

In the approximate calculations that follow it is assumed that

b » ® and m » ® in such a way that for some 91 >0

b = el/xﬁ : (8)

It tollows from (1) and the strong law of large numbers that as b » =,

for all 8 > 0

bvYT ~ sy ~ 67 and hence T - L i (9)

Thus by (8)

g for 8] < 91
P {T<m} ~ ; (10)
1 fox (8] >0
:
80 61 defines asymptotically those values of O for which the experiment
is terminated before the m—t—-tl observation.

Let

1 = infi{n: s >b/n} . (11)
+ n-—




The basic theoretical result of this paper is summarized in

Proposition 1. Under condition (8), for all ® and 0 < x < ©, as b + ®

pe{aim,b/ﬁ-xism%/a%m‘}’cp(/a(e-ol))fo"p_%el{r(y)@}em{(el-e)y}dv, (12)

where T(x) = inf{n: sn3>x} and ¢ denotes the standard normal density
function. For O > 0, # 81 (12) also holds when x = ©,

A heuristic argument in support of Proposition 1 is implicit in
Section 3 of Siegmund (1977). A proof using a somewhat different
approach is contained in the Appendix. Several of the important ideas
go back to Anscombe (1953).

Of course, for use in calculating probabilities it is still
necessary to evaluate the integral on the right hand side of (12). For
X = o and 6 > 81 Siegmund (1977) observed that random walk theory
allows one to rewrite this integral in a form suited for easy machine
computation; and, in fact, the same formula is valid for x = ® and
<8< 91 also.

By standard reasoning for 6 > 0 as x + ©
P_olT(x) <=} ~ exp(=26%) (P_g{7(0) ==})?/26° (e.g., Siegmund, 1975).
Random walk theory yields a computationally convenient evaluation of

P_e{T(O)-‘”} (Feller, 1966, p. 395) leading to the asymptotic relation

P_%elfT(x)<fm} ~ v(Bl) exp(-le) (x+) {13)

where in terms of the standard normal distribution function ¢
v(8) = 2 exp(-2 17 0" o(- %en;’)}/e2 : (14)

Table 1 gives selected values of V.




TABLE

(4)
3 V(8)
I
.10 .9435 |
.15 9164 |
.20 8901 |
.25 .8645
.30 .8397
.35 .8157
.40 .7923
.45 .7696
.50 L7476
.55 .7263
.60 .7055
.65 .6854
70 6659
18 6470
.80 .6286
.85 .6107
.90 .5934
.95 5767
| 1.00 .5604
7
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Numerical evidence, some of which is mentioned in Siegmund
(1975), suggests that the convergence indicated by (13) is very fast,
and hence for 0 < x < ® a reasonable apprcximation to the integral on
the right in (12) is obtained by first writing &; = &T - ﬂ? and then
pretending that (13) is an equality to evaluate 4?. For 6 < 0 and
fairly small values of x it 1s probably reasonably accurate to substi-
tute the right hand side of (13) directly into the integrand on the
right in (12). Actually, even for 8 > 0 and x = ©, when exact evalua-
tion of the integral on the right hand side of (12) is possible, using
(13) and the tabled values of (14) tc obtain an approximate evaluation
of (12) seems to be accurate enough for most practical purposes.

With the aid of Proposition 1 it is possible to give good

approximations to the probabilities appearing in (2)~(4) for most

parameter values of interest. For example, for 0 < 6 < 81

PolT<m, s, >0} ~ P{T, <m} = Po{s_>bvm} + P {T <m, s <bvm} ; (15)

for 8 > 0 and x > 0

Pe{Tﬁm,sT>0}-+P8{T>m,sm>b/a—x}; Pe{sm:b/a-x}4-P8{T+‘Jm,sm<b/a;x} : (16)

and for 6 > 81

Po{Tom} +P (T <m,5.<0} ~Po{T >m} =P {s_<b/n}~Py{T <m,s <b/n}. (17)

6

The first terms on the right hand sides of (15)-(17) are obtained
exactly in terms of the normal distribution, and the second terms
may be evaluated approximately using Proposition 1. For n < m scaled

for asymptotic purposes by the relation

n=mr for some 3 L NS e R (18)




approximations to P {T <n, Sy »0}, etc. may be obtained from similar

formulae but with Jl replaced by ”:VE. The approximation given by (17)
and Proposition 1 is essentially that suggested in Siegmund (1977) for
the type Il error probability of the test defined in Section 1. It was
shown to be quite accurate for computational purposes by comparing 1t
with exact numerical results of McPherson and Armitage (1971)--see also
Armitage (1975). The author has performed a small simulation to check
the accuracy of the approximation suggested by (15) and Proposition 1.
Although this approximation does not seem to be quite as good as that
given by (17), its accuracy to within about 4~6% seems adequate for
practical purposes.

Table 2 gives some examples of approximate 907 confidence
intervals for 6 computed from hypothetical data. The test parameters
are b = 3.45 and m = 148, which give a significance level o = .01 and
power 1 -8 = .95 at 8 = .4 (Armitage, 1975, p. 105). The data were
selected to correspond roughly to "typical" outcomes for 8 = .8, .6,
.4, .27, and .2. For example, the value T = 19 in the first row is the
nearest integer to EGT for 6 = .8. (According to simulations and the
asymptotic approximations of Siegmund, 1977, E,T = 18,8 for 8= (8.3
The columns headed "Probability" give approximately the probability of
obtaining a more extreme value than the data in the first column for
the value 6 equal to the one-sided confidence limit in the preceding
column. Thus the first row of the third column gives approximately

P 35{Tf_19, s, >0}, while the corresponding entry in the fifth column

b

gives approximately Pl.]S{T_il9} - Pl.lS{T< 19, s, <0}.

Aot

Wit =




TABLE 2

907% CONFIDENCE INTERVALS

Data 8 Probability G Probability
T = 19, Sp > 0 <35 .053 1alS .049
T = 32, Sy > 0 <26 .051 .89 .049
T = 68, 8¢ > 0 ali7 .048 .60 .050
T > 148, S148 = 40 ek .048 .40 .046
P > 148, S148 = 30 .06 .047 .34 .050

In regard to the heuristic discussion concerning proportional
accuracy in Section 1, it is interesting to note that if one considers
the midpoint é = (g;r@)/z of the intervals in Table 2 as a point esti-
mator of 6, then the ratio (5-—9)/6 is approximately constant (= 1.1)
in the first four rows. In the last row the confidence interval is
essentially the same as the standard fixed sample size interval based
on the same value of $148°

There is an apparent discrepancy between the confidence
intervals given in Table 2 and the test of hypothesis defined in
Section 1, in the sense that for the data in the last two rows ot
Table 2 the interval (8, 5) does not contain 0, although the test of

Section 1 fails to reject H 8 = 0. Of course, the reason

o
is that Table 2 gives 907% confidence intervals whereas the

significance level of the test is o = .0l. These choices were made to

10




provide an excuse for the following discussion.

For 2y > PO{Tjim} a test which rejects H.: 8 = 0 if and only if

0
the (1 -2y) 100% confidence interval defined above fails to contain 0

has as its rejection region {T:_m} U{T>m, ism[;:i}, where

0« & < bY/m is chosen so that

2y = P {T<m} + P {T>m, ssmi > £}

Along with its larger type I error probability this test has a smaller
type Il error probability than the test of Section 1. It has some
additional flexibility which suggests that it should be studied in its
own right. Since this test is defined by three parameters b, m, and £,
it is possible to impose another constraint in addition to the usual
determination of a and . For example, b may be increased to provide
for more accurate estimation of 6. Another possibility is to choose

a smaller value of m than the test of Section 1 requires, so that the
maximum sample size of the sequential test is not so much larger than
that of the fixed sample size test of the same o and B. Both of these
modifications tend to increase the expected sample size for large [0}

and must be evaluated accordingly.

11
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The methods of this section may also be used to obtain point
estimators of 6. The obvious suggestion is the midpoint QZ+6)/2 of
the confidence interval fQ) 5] for some confidence coefficient
(1-2y) 100%. The midpoint of the 0% interval is perhaps the most
natural. For the data of Table 2 the midpoints of the 07 intervals are
essentially the same as the midpoints of the 907 intervals. It is not
known whether this is true generally.

3. Estimators Based on Xpo

The estimators of the preceding section are unusual in the
sense that when T < m they are defined directly in terms of T and only
indirectly in terms of ;i = ST/T. This has important implications when
o is unknown, for then analogous arguments give estimators for the
parameter 9 = /0 and not | alone--see Section 4. In this section
simple estimators based on ;I' are suggested and some of their proper-
ties studied, largely by simulation.

The naive estimator x_, is rather badly biased when |8| is

T'
large, but this bias 1s easlily approximated and may be reduced con-
siderably by a simple modification. To compute the asymptotic bias of

Xpo as b+ ® and m + © so that (8) holds, observe that
sg/T = b/VT + (s = b/D)/T = b/VT + (s2/T=b%) /(s +0/D) . (19)

From (9) it follows that

sy + b/ - N s, ED . (20)

12




A Tavlor series expansicn gives

3
b/VE = 8 - 85(T-b2/6%) /262 + 30°(T-b2/0D) 28 + ... . (21)

The following asymptotic results have been obtained by Lai and Siegmund
(1977, unpublished) and Woodroofe (1976a) in terms of Sn = @sn ~ n92/2

and T, = inf{n: S >0}:
i n

S 2 2 ol RISy
EgT = (b -1)/8" + ES” /0°EgS_ + o(1), Vary T ~ 4b°/6"

6 £ 5 6

and Ee(silT-bz) + E Sf /2 E_S as b » ®, Substituting these

0 + 8 T,

results into (19) and (21) and appealing to (20) yields for 8 # 0
2 2
Ee(sT/T) = 0(1+2/b°) + o(b") (b.Ese) (22)

It follows heuristically from (10) and (22) and rigorously after some

additional calculation that

E.X., = 9(]+2/b2) + o(b'z) for |B8] > @

-y 1

=9 + o(b—z) for |6] < 91
This suggests estimating © by

8 = (s,/T)/(1+2/b°) 1T <m
(23)

= s /m 1f T > t
m

so that EOé =0 + o(b~2) for all |6 # 61. Obviously this estimator
should be altered further to avoid the embarrassing possibility of
estimating IOI tc be larger when T > m and ]sml is close to bvm than

when T = m. It is doubtful that such a refinement would significantly

13
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alter the behavior of the estimator except perhaps for |8| close to 91.
In any case the author has made no effort in this direction.

A similar calculation shows that

E (8-6)6 E.(X —8)2 - (el) 2 8 9

™
fee}

~ 1/m 6] <

According to (9) and a Theorem of Anscombe (1952), as b » =
/?T(;T,-G) has asymptoticalily a standard normal distribution. Since

b(G-—xT,) + 0 in probability, the same is true for vT'(8-6). Hence

with zY defined by 1 ~ ¢(zY) = y the interval

[é-zy//'f'— ; 6+zY/./‘r—'] (25)

is an approximate (1-2y) 1007 confidence interval for 6. An alterna-
tive interval, which is slightly longer when T < m, and which empha-
sizes the manner in which T provides for estimating 6 with prescribed

proportional accuracy 1is
[6-zY max (|, /b, 1//m), ?3”Y max ([, [/b, 1Y) . (26)

For the current problem of estimating a normal mean with known variance,
the difference between (25) and (26) is practically negligible. For
other parametric families and for the case of a normal mean with
unknown variance, the analogous difference may be important--see
Section 4.

Table 3 contains the results of a small Monte Carlo experiment
to check the accuracy of the preceding asymptotic analysis. The values

chosen for b and m were again 3.45 and 148 respectively. The value of

14
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TABLE 3

ESTIMATED PROPERTIES OF 6 OBTAINED FROM
A 200 REPETITION MONTE CARLO EXPERIMENT

a ﬁeﬁ + Standard Error Eg(a-ﬂ)z PZ?ZE:?E:e
.80 T g .075 .895
.60 64 = .02 .045 .905
.40 300 .051 .900
s 30 £ ,01 : .029 .900
.20 <200 =) +915

1 + 2/b2 is 1.168, so the recommended bias reducing factor decreases
sT/T by about 147%. The value of 91 is .284. The row corresponding to
.27 is of particular interest, for in a neighborhood of 8 = 81 the

preceding asymptotic analysis can be expected to yield good approxima-

tions only for b quite large. (Actually for 6 = 81 the analysis given

‘"Fai”E6(§¥TTT*7”BfééRE"HaﬁﬁT"”KTtérnaTTVE‘taituiations~y&e1d~ambiaswoﬁ-~

order b-z, but the details have been omitted.)

The figures in Table 1 suggest that 6 has a small positive
bias, but that the bias is much smaller than that of the unmodified
estimator sT,/T'. The mean square error is poorly predicted by the
asymptotic theory. However, the mean square error of the unmodified
estimator sT,/T' (which is not reported here) seems to be consistently

about 507 larger than for 6. The percentage of times the interval (26)

covered the true parameter 6 is remarkably close to the nominal .90.

13
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The following discussion explores the relation between the
approximate confidence intervals given by (26) and those of the pre-
ceding section. As a first step, it is interesting to compute the
intervals given by (26) for the hypothetical data in Table 2. In order
to do this for the data of the first three rows, it 1is necessary to

hypothesize a value for sp in addition tc T. But Sp = bvT + (ST-bVﬁﬁ;

and it follows from results of Lai and Siegmund (1977, unpublished) or

Woodroofe (1976a) that as b » = Ee(sT-b/T) - E Sf /ZOEOST , where
+

]
9 +
S =6s -nb67/2 and T, = inf{n: S_ > 0}. It may be shown that
n n + n
E S2
1

6 /ZGEGSr = .584 ... + 6/8 + 0(6) as 6 » 0, which suggests using

+ +

QT = b/T + .584 27

as a hypothetical value for Sp as a function of T. Table 4 gives
approximate 90% confidence intervals for 6 for the hypothetical data of

Table 1 with Sy approximated by (27). The 1intervals in Table 4 are

TABLE 4

APPROXIMATE 907% CONFIDENCE INTERVALS FROM (26)

D>

Data Lower Limit Upper Limit
T= 19, Sp = £3.02 . 704 + L 1.10
T = 3d Sp = 20.1 .538 .24 .84
T = 68, Sp = 29.0 . 366 .16 .57
T > 148, 5148 = 40 .270 «13 .41
T > 148, 8148 " 30 .203 .07 .34 4

16




about the same length as those in Table 2. For data T < m they tend to
be shifted slightly toward smaller values of |0|, which is a reflection
of the fairly substantial bias reducing factor which goes into 6.

It is also possible to give a crude analytic approximation to

the coverage probability of (26). It is easy to see that
(8 -0 > Ix > = ’ - >0}
Po{6-0 zy,xTI/b. sp >0} = P {T<m((s, b/T)//T), s, >0} , (28)

where m(x) = [6'1{b(1+2/b2)_1 - zY}{1+x/b}]2. 1f the argument of the
function m on the right hand side of (28) were not random, the methods
of the preceding section would give an approximation to (28). Since T
is an integer valued random variable and very small changes in x

do not change the integer part of m(x), it does not seem com-

pletely outrageous to replace the random variable (sT-b/T)//T by an
approximation to its expectation. Equation (9) and the discussion pre-

ceding (27) suggest considering
Po{T<m(b™'6(.584+0/8))) (29)

as an approximation to (28). For b = 3.45, m = 148, zY = 1.645 and

6 = .6 this argument yields the approximation
A og z 5
Py {0 6>zy|xT|/b} 030 |, (30)
and a similar calculation gives
P {6-0< -zleT|/b} s .073 , (31)

so that the probability that interval (26) fails to cover 6 is about

.030 4+ .073 = .103. The corresponding calculations for 0 = .4 yield

17
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respectively .034, .076, and .109. Although these calculations should
not be taken too seriously, it is interesting to note that the right
tail probability in (30) is smaller than the left tail probability in
(31), which is consistent with the earlier observation that the
intervals (26) are shifted towards smaller values of |8| than those of
Section 2. Also the total coverage probability seems to remain reason-
ably close to the nominal .90, which is consistent with the Monte Carlo
results presented in Table 3. The author has performed a few calcula-
tions for other values of b and 6 and obtained results which are

reasonably consistent with those reported here.

4. Remarks on Other Parametric Models

The results of the preceding sections should extend in a fairly
straightforward manner to problems involving other one parameter
exponential models. At least there seem to be no conceptual
difficulties, although the technical requirements of the approximate
calculations of Section 2 may be considerable. The important case of
matched pairs of Bernoulli outcomes may be reduced to a one parameter
model by the customary practice of discarding success-sucess and
failure-failure pairs (Wald, 1947, p. 107). However, numerical compu-
tation of the constants which enter into the asymptotic formulas of
Section 2 may not be appreciably simpler than exact numerical computa-
tion of the probabilities from the difference equations they satisfy.

By way of contrast the case of a normal population with unknown
mean and variance presents a new conceptual problem. Now assume that

X sXyye.. are independent and normally distributed with unknown mean u

18
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s
and variance 0°. Siegmund (1977) suggests a stopping rule analogous to

(1) for testing HO: p = 0 against HI: i # 0 defined in terms of the log

generalized likelihood ratio statistic

1 -2, 2
- +
Zn 21110g(1 xn/vn)
= -1 n SR T =
Here x n Ly %y and L Zl(xk-xn) . FPor a > 0 and
B.ow 2. 3.... let T = firat n > m. such that 2. > a, PFor
0 S n

m = my, mg + 1,... stop sampling at T' = min(f,m) and reject HO if and

only if f < m. An asymptotic approximation for the significance level
of this test as i B et and a * ® in such a way that 60 = /3;755
and 81 = V2a/m remain fixed is given by Siegmund (1977), and an approx-
imation to the power may also be obtained.

An attempt to adapt the estimation methods of Sections 2 and 3
leads to several new problems. The distribution of the Zn and hence of
% depends on the parameters (U,0) only through the value of 6 = u/o,
and thus the method of Section 2 yields confidence intervals for 6 but
not for u alone. In a clinical trials context the primary goal of
experimentation is decision oriented: to recommend the superior treat-
ment if there is an appreciable difference in their effects; and a con-
fidence interval provides a more useful way of measuring this differ-~
ence than a simple test of hypothesis. However, the exact parameter
used to measure this difference seems not to be terribly important, and
for this reason a confidence interval for 6 may be as useful as one for
the customary . The computations required to give confidence

intervals for 6 by the method of Section 2 are quite complicated and

will be considered in a future publication.
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Estimation of 6 based on ;é./v%, may be carried out in much the
same fashion as in Section 3.

In principle p may be estimated by ;?,, perhaps adjusted for
bias, and approximate confidence intervals analogous to (25) or (26)
may be given. However, it is not true in general that small values of
% are evidence in favor of large values of ;ul (although they are
evidence of large values of }9'). Two new facts make this line of
attack more complicated than in the case of known O.

Computation of the asymptotic bias of §é seems much more diffi-
cult than in the case of known 0. Presumably the bias is smaller than
before because small values of T may be caused by large values of ;; or
small values of vi or both. A small Monte Carlo study not reported in
detail suggests that some adjustment is advisable but that the adjust-
ment used in the case of known O is slightly too large.

Given a satisfactory point estimator a for y, analogous confi-

dence intervals corresponding to (25) and (26) are respectively
[U‘ZYV%O//.'; ’ G"'ZYV{"/‘I.’I:_'] (32)
and

[a-zymax(l;;.l//5; E vm/A;), a-+zYmax(l;é,|/J5; . vm/ﬁ;)] . (33)

The second interval has the interpretation of estimating u with pre-
scribed proportional accuracy whenever f < m. It is longer than the
first interval, and perhaps considerably longer, by virtue of the

inequalities

VT//,E,-f_Vf /{og(lf)?,z\/vf)/Za < |;,’1‘.|//2—a ‘
¢ A
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Determination of a reasonable estimator pu and of the relative merits of

(33) and (34) awaits further study.
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Appendix

Proof That [0, 6] Has Required Coverage Probability

§ The notation and definitions are those of Section 2. It
suffices to show for all 6 that Pe{g)f)} < Y. That Pe{?)<6} g
proved similarly and these two statements together imply that
Pe{_@_f_ej_@} > 1 ~ 2y. There are three cases to consider: (I)
8,(m) <8, (I1) 8, (m) > 6 and §,(-b/m) < 6, (I1D) 8,(-bvim) > 6 (and

necessarily _e_l(m) >0). In casel PG{T:m, s, >0} > y and hence

T

Pe{g>8} = Pe{Tim, s,r>0, gl(T) >0}
= Pe{Tj_n, sT>O}, where _B_I(n) ’>6‘igl(n+ 1) [
< Pgl(n){Tin, sT>0}
=Y

>0} + P.{T >m} and hence

In case II P9{T_<_m, s . 5

T>O} < YiPO{Tim, s

Pg{8>6} = Pg{T<m, s, >0} + Py{T>m, 8,(s ) >0}

= Pe{Tf_m, sT>O} + Pe{T‘)m, sm)g}, where Qz(i) -0

Case III is treated similarly and is omitted.

Proof of Proposition 1.

The following argument gives an asymptotic upper bound for the
probability on the left hand side of (12). The corresponding lower

bound is obtained by a similar but considerably easier argument. For

SRR e




k=0,1,...,m and 0 < x < «, since Sm is sufficient for 6 and (8) holds

P.{T, <m, b/m-x<s <b/m} < P {T <m-k, b/m-x<s_<bvm}
A —m —_ 1 g .. @

3 5 y

+m 2*.‘(\%("‘1 *“)U‘Ox Pn‘sn >bvn for some m-k<n<m g ¥ Q]m—y} (34)
e x 2 :

. exp’.("1 -8y -y~ /2midy

Lemma 1. For fixed kK = 0,),:ssy and 0 € y € =

DR o e =
}’nfsn >bvn for some m-k;n<m}sm=b/m-v} > P_,ﬂ,pl {t(y) <k}

Proof. The conditional probability above may be rewritten

P{s -s <b/m-b/n-y for some m—k<n<m]s =b/r3—y}
0 m n = m

= P(){Si <b/m-b/m-i-y for some 0<i_<'_k|sm=91 m-y}

It is easily verified by straightforward calculation that

: TR ) =y
bvm-bvm-1==m LEbi+0(m 32,

}.i and the joint density of

1
el &

o=

X ..xi given Sm = m*,fl -y converges to that of independent normal

P
random variables with mean '31 and variance 1. The lemma follows easily

Lemma 2. Por O < €& < t’fl and Fixed K = 0,1 4.0,

1
P{T, <m-k} < e (k) m 7 6((8, - 6)/m) ,

where r,.H(k) does not depend on m and converges to 0 as k + @™,

Proof.
m-1
P (T <m-k}< £ P.{s >b/al= I [1-0{(6,-6)/m+6(/m=-vm-1)})
g+ o 8 n 1
n<m-k i=k+1
23
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The inequalities Vm - Vm ~ 1 ;%m S98 and 1 -®(x) <x lrt)(x) (x »0)
vield the required result with
_] (s &} 1
e (k) = (8. =08) L expl-=68(H, -06)1}
8 1 oy il |
Lemma 3. For each 0, k = 0,1l,..., and 0 € x € »

s |
Po{T, <m-k, b/ﬁ—x:sm<b/m}:~_€e(k) exp(x*/2m)m "t o(/m(6, -8))

where Fa(k) does not depend on m and converges to 0 as k *» ®, For
g8 > O, sn(k) may be chosen to be independent of x.
Proof. For @ < & < 91 this result is already implied by Lemma 2. By

(8) and sufficiency of s

P {T, <m-k, bVym-x<s_<bvm}
0" "+ —"m
(35)

‘!ﬁ X - e 2
=m @(/1;(91—8)) JO PoiT*‘»m—klsm=b/r_n.-y)exp{(vl—v)y-_v /2m}dy

Setting 6 = vy < 6, in (35) gives

1
{ 8 = —L} 2 . X & -
PY“T*' m-k}>m ¢(/r;(91 -v))exp(-x"/2m) I PO{T+ : m-k|sm— bvVm ~ v }dy

and hence by Lemma 2

X - 2
fo PO{T+ <m- klsm= bvm - yldy < exp(x"/2m) 1nf &Y(k) ‘
0<Y<61

Substituting this inequality back into (35) gives the desired result.
That the right hand side of (12) is asymptotically an upper

bound for the left hand side follows at once from (34), Lemma 1, and
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Lemma 3 in the case x < ®, For the case x = », for arbitrary finite x'

Pe{T+<m, sm”b/n_ﬂ = PG{T+<m, b/n?—x'<sm<b/t;}

(36)
+ PG{T+<m, sm<b/r;-x'}

For 6 > 6

PG{T+<m, sm<b/r;— '} < Pe{sm<m61—x'} = ¢{/{ﬁ(61—8)—x'//r;}

< exp{(6; - 0)x'} ¢(/m(6, -0))//m(6-6)) ,

so the desired result follows from the case of finite x by first
letting m » © and then x' -+ « in (36). The required estimate for the
second probability on the right hand side of (36) in the case

0 <8 < 81 is provided by Lemma 2 and the following result.

Lemma 4. For 0 < 68 < 9 k =0,1,..., and 0 < x < @ for all m

l’

sufficiently large
Polm-k<T <m, s <b/m-x} < 6(x) o(/m(®, -0))//m ,

where 8(x) - 0 as x + =,

Proof. The proof follows easily from the argument of Lemma 2 and the

inequality

Polm-k<T <m, s <b/m-x}< I PyiT =n}Pg{s -s_ <b/m-b/n-x)

+
m-k<n<m

< I {1-6(-0/m-1)}0((0, ~0)/1-x/V1)
0<1<k
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